
about the -axis. Therefore, from Formula 7, we get

M! 2!r 2!"cos t"]0
!

! 4!r 2! 2!r 2 y!

0
 sin t dt

! 2! y!

0
 r sin t ! r dt! 2! y!

0
 r sin t sr 2!sin2t # cos2t" dt

S ! y!

0
 2!r sin t s!"r sin t"2 # !r cos t"2 dt

x
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19. ,

20. ,

; 21. Use a graph to estimate the coordinates of the rightmost point
on the curve , . Then use calculus to find the
exact coordinates.

; 22. Use a graph to estimate the coordinates of the lowest point and
the leftmost point on the curve , . Then
find the exact coordinates.

; 23–24 Graph the curve in a viewing rectangle that displays all the
important aspects of the curve.

,

24. ,

Show that the curve , has two tangents
at and find their equations. Sketch the curve.

; 26. Graph the curve , to
discover where it crosses itself. Then find equations of both
tangents at that point.

27. (a) Find the slope of the tangent line to the trochoid
, in terms of . (See Exer-

cise 40 in Section 10.1.)
(b) Show that if , then the trochoid does not have a 

vertical tangent.

28. (a) Find the slope of the tangent to the astroid ,
in terms of . (Astroids are explored in the

Laboratory Project on page 629.)
(b) At what points is the tangent horizontal or vertical?
(c) At what points does the tangent have slope 1 or ?

29. At what points on the curve , does the
tangent line have slope ?

30. Find equations of the tangents to the curve ,
that pass through the point .

Use the parametric equations of an ellipse, ,
, , to find the area that it encloses.0 $ % $ 2!y ! b sin %

x ! a cos %31.

!4, 3"y ! 2t 3 # 1
x ! 3t 2 # 1

1
y ! 1 # 4t " t 2x ! 2t 3

"1

%y ! a sin3%
x ! a cos3%

d & r

%y ! r " d cos %x ! r% " d sin %

y ! sin t # 2 sin 2tx ! cos t # 2 cos 2t

!0, 0"
y ! sin t cos tx ! cos t25.

y ! 2t 2 " tx ! t 4 # 4t 3 " 8t 2

y ! t 3 " tx ! t 4 " 2t 3 " 2t 223.

y ! t # t 4x ! t 4 " 2t

y ! e tx ! t " t 6

y ! 2 sin %x ! cos 3%

y ! sin 2%x ! 2 cos %1–2 Find .

1. , 2. ,

3–6 Find an equation of the tangent to the curve at the point corre-
sponding to the given value of the parameter.

3. , ;

4. , ;

, ;

6. , ;

7–8 Find an equation of the tangent to the curve at the given point
by two methods: (a) without eliminating the parameter and (b) by
first eliminating the parameter.

7. , ;

8. , ;

; 9–10 Find an equation of the tangent(s) to the curve at the given
point. Then graph the curve and the tangent(s).

9. , ;

10. , ;

11–16 Find and . For which values of is the curve
concave upward?

, 12. ,

13. , 14. ,

15. , ,

16. , ,

17–20 Find the points on the curve where the tangent is horizontal
or vertical. If you have a graphing device, graph the curve to check
your work.

17. ,
18. , y ! 2t 3 # 3t 2 # 1x ! 2t 3 # 3t 2 " 12t

y ! t 3 " 12tx ! 10 " t 2

0 & t & !y ! cos tx ! cos 2 t

0 & t & 2!y ! 3 cos tx ! 2 sin t

y ! t " ln tx ! t # ln ty ! t # e" tx ! t " e t

y ! t 2 " 1x ! t 3 " 12ty ! t 2 # t 3x ! 4 # t 211.

td 2 y#dx 2dy#dx

!"1, 1"y ! sin t # sin 2tx ! cos t # cos 2t

!0, 0"y ! t 2 # tx ! 6 sin t

(1, s2)y ! sec %x ! tan %

!1, 3"y ! t 2 # 2x ! 1 # ln t

% ! 0y ! sin % # cos 2%x ! cos % # sin 2%

t ! 1y ! t " ln t 2x ! est 
5.

t ! 1y ! 1 # t 2x ! t " t"1

t ! "1y ! t 3 # tx ! t 4 # 1

y ! st  e"tx ! 1#ty ! t 2 # tx ! t sin t

dy#dx

EXERCISES10.2



49. Use Simpson’s Rule with to estimate the length of the
curve , , .

50. In Exercise 43 in Section 10.1 you were asked to derive the
parametric equations , for the
curve called the witch of Maria Agnesi. Use Simpson’s Rule
with to estimate the length of the arc of this curve
given by .

51–52 Find the distance traveled by a particle with position 
as varies in the given time interval. Compare with the length of
the curve.

51. , ,

52. , ,

53. Show that the total length of the ellipse ,
, , is

where is the eccentricity of the ellipse , where
.

54. Find the total length of the astroid , ,
where 

55. (a) Graph the epitrochoid with equations

What parameter interval gives the complete curve?
(b) Use your CAS to find the approximate length of this

curve.

56. A curve called Cornu’s spiral is defined by the parametric
equations

where and are the Fresnel functions that were introduced
in Chapter 5.
(a) Graph this curve. What happens as and as 

?
(b) Find the length of Cornu’s spiral from the origin to the

point with parameter value .

57–58 Set up an integral that represents the area of the surface
obtained by rotating the given curve about the -axis. Then use
your calculator to find the surface area correct to four decimal
places.

57. , ,

58. , , 0 $ t $ !#3y ! sin 3tx ! sin2t

0 $ t $ 1y ! !t 2 # 1"e tx ! 1 # te t

x

t

t l "'
t l '

SC

 y ! S!t" ! yt

0
 sin!!u 2#2" du

 x ! C!t" ! yt

0
 cos!!u 2#2" du

CAS

 y ! 11 sin t " 4 sin!11t#2"

 x ! 11 cos t " 4 cos!11t#2"

CAS

a ( 0.
y ! a sin3%x ! a cos3%

c ! sa 2 " b 2 )
(e ! c#ae

L ! 4a y!#2

0
 s1 " e 2 sin2%   d%

a ( b ( 0y ! b cos %
x ! a sin %

0 $ t $ 4!y ! cos tx ! cos2t

0 $ t $ 3!y ! cos2tx ! sin2t

t
!x, y"

!#4 $ % $ !#2
n ! 4

y ! 2a sin2%x ! 2a cot %

"6 $ t $ 6y ! t # e tx ! t " e t
n ! 632. Find the area enclosed by the curve , and

the .

33. Find the area enclosed by the and the curve 
, .

34. Find the area of the region enclosed by the astroid
, . (Astroids are explored in the Labo-

ratory Project on page 629.)

35. Find the area under one arch of the trochoid of Exercise 40 in
Section 10.1 for the case .

36. Let be the region enclosed by the loop of the curve in
Example 1.
(a) Find the area of .
(b) If is rotated about the -axis, find the volume of the

resulting solid.
(c) Find the centroid of .

37–40 Set up an integral that represents the length of the curve.
Then use your calculator to find the length correct to four decimal
places.

37. , ,

38. , ,

39. , ,

40. , ,

41–44 Find the exact length of the curve.

, ,

42. , ,

43. , ,

44. , ,

; 45–47 Graph the curve and find its length.

, ,

46. , ,

47. , ,

48. Find the length of the loop of the curve ,
.y ! 3t 2

x ! 3t " t 3

"8 $ t $ 3y ! 4e t#2x ! e t " t

!#4 $ t $ 3!#4y ! sin tx ! cos t # ln(tan 12 t)
0 $ t $ !y ! e t sin tx ! e t cos t45.

0 $ t $ !y ! 3 sin t " sin 3tx ! 3 cos t " cos 3t

0 $ t $ 2y ! ln!1 # t"x !
t

1 # t

0 $ t $ 3y ! 5 " 2tx ! et # e"t

0 $ t $ 1y ! 4 # 2t 3x ! 1 # 3t 241.

1 $ t $ 5y ! st # 1x ! ln t

0 $ t $ 2!y ! t " sin tx ! t # cos t

"3 $ t $ 3y ! t 2x ! 1 # e t

1 $ t $ 2y ! 4
3 t 3#2x ! t " t 2

!

x!
!

!

d & r

y

x0 a_a

_a

a

y ! a sin3%x ! a cos3%

y ! t " t 2x ! 1 # e t
x-axis

y-axis
y ! st x ! t 2 " 2t
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(b) By regarding a curve as the parametric curve
, , with parameter , show that the formula

in part (a) becomes

70. (a) Use the formula in Exercise 69(b) to find the curvature of
the parabola at the point .

(b) At what point does this parabola have maximum
curvature?

71. Use the formula in Exercise 69(a) to find the curvature of the
cycloid , at the top of one of its
arches.

72. (a) Show that the curvature at each point of a straight line 
is .

(b) Show that the curvature at each point of a circle of 
radius is .

73. A string is wound around a circle and then unwound while
being held taut. The curve traced by the point at the end of
the string is called the involute of the circle. If the circle has
radius and center and the initial position of is ,
and if the parameter is chosen as in the figure, show
that parametric equations of the involute are

74. A cow is tied to a silo with radius by a rope just long
enough to reach the opposite side of the silo. Find the area
available for grazing by the cow.

r

xO

y

r
¨ P

T

y ! r !sin % " % cos %"x ! r !cos % # % sin %"

%
!r, 0"POr

P

) ! 1#rr

) ! 0

y ! 1 " cos %x ! % " sin %

!1, 1"y ! x 2

0 x

y

P

˙

) ! $ d 2 y#dx 2 $
%1 # !dy#dx"2 &3#2

xy ! f !x"x ! x
y ! f !x"59–61 Find the exact area of the surface obtained by rotating the

given curve about the -axis.

59. , ,

60. , ,

, ,

; 62. Graph the curve

If this curve is rotated about the -axis, find the area of the
resulting surface. (Use your graph to help find the correct 
parameter interval.)

63. If the curve

is rotated about the -axis, use your calculator to estimate the
area of the resulting surface to three decimal places. 

64. If the arc of the curve in Exercise 50 is rotated about the 
-axis, estimate the area of the resulting surface using Simp-

son’s Rule with .

65–66 Find the surface area generated by rotating the given
curve about the -axis.

, ,

66. , ,

67. If is continuous and for , show that the
parametric curve , , , can be put in
the form . [Hint: Show that exists.]

68. Use Formula 2 to derive Formula 7 from Formula 8.2.5 for
the case in which the curve can be represented in the form

, .

69. The curvature at a point of a curve is defined as

where is the angle of inclination of the tangent line at ,
as shown in the figure. Thus the curvature is the absolute
value of the rate of change of with respect to arc length. It
can be regarded as a measure of the rate of change of direc-
tion of the curve at and will be studied in greater detail in
Chapter 13.
(a) For a parametric curve , , derive the 

formula

where the dots indicate derivatives with respect to , so
. [Hint: Use and Formula 2

to find . Then use the Chain Rule to find .]d*#dsd*#dt
* ! tan"1!dy#dx"x" ! dx#dt

t

) ! $ x"y"" " x""y" $
%x" 2 # y" 2 &3#2

y ! y!t"x ! x!t"

P

*

P*

) ! ' d*

ds '
P

a $ x $ by ! F!x"

f "1y ! F!x"
a $ t $ by ! t!t"x ! f !t"
a $ t $ bf +!t" # 0f +

0 $ t $ 1y ! 4e t#2x ! e t " t

0 $ t $ 5y ! 2t 3x ! 3t 265.

y

n ! 4
x

x

1 $ t $ 2y ! t "
1
t 2x ! t # t 3

x

y ! 2 sin % " sin 2%x ! 2 cos % " cos 2%

0 $ % $ !#2y ! a sin3%x ! a cos3%61.

0 $ t $ 1y ! 3t 2x ! 3t " t 3

0 $ t $ 1y ! t 2x ! t 3

x
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The Bézier curves are used in computer-aided design and are named after the French mathema-
tician Pierre Bézier (1910–1999), who worked in the automotive industry. A cubic Bézier curve 
is determined by four control points, and , and is 
defined by the parametric equations

where . Notice that when we have and when we have
, so the curve starts at and ends at .

1. Graph the Bézier curve with control points , , , and 
Then, on the same screen, graph the line segments , , and . (Exercise 31 in 
Section 10.1 shows how to do this.) Notice that the middle control points and don’t lie
on the curve; the curve starts at , heads toward and without reaching them, and ends 
at 

2. From the graph in Problem 1, it appears that the tangent at passes through and the 
tangent at passes through . Prove it.

3. Try to produce a Bézier curve with a loop by changing the second control point in 
Problem 1.

4. Some laser printers use Bézier curves to represent letters and other symbols. Experiment 
with control points until you find a Bézier curve that gives a reasonable representation of the 
letter C.

5. More complicated shapes can be represented by piecing together two or more Bézier curves.
Suppose the first Bézier curve has control points and the second one has con-
trol points . If we want these two pieces to join together smoothly, then the
tangents at should match and so the points , , and all have to lie on this common
tangent line. Using this principle, find control points for a pair of Bézier curves that repre-
sent the letter S.

P4P3P2P3

P3, P4, P5, P6

P0, P1, P2, P3

P2P3

P1P0

P3 .
P2P1P0

P2P1

P2P3P1P2P0P1

P3!40, 5".P2!50, 42"P1!28, 48"P0!4, 1"

P3P0!x, y" ! !x3, y3"
t ! 1!x, y" ! !x0, y0 "t ! 00 $ t $ 1

 y ! y0!1 " t"3 # 3y1t!1 " t"2 # 3y2t 2!1 " t" # y3t 3

 x ! x0!1 " t"3 # 3x1t!1 " t"2 # 3x2t 2!1 " t" # x3t 3

P3!x3, y3 "P0!x0, y0 ", P1!x1, y1", P2!x2, y2 ",

SECTION 10.3 POLAR COORDINATES | | | | 639

POLAR COORDINATES

A coordinate system represents a point in the plane by an ordered pair of numbers called
coordinates. Usually we use Cartesian coordinates, which are directed distances from two
perpendicular axes. Here we describe a coordinate system introduced by Newton, called
the polar coordinate system, which is more convenient for many purposes.

We choose a point in the plane that is called the pole (or origin) and is labeled . Then
we draw a ray (half-line) starting at called the polar axis. This axis is usually drawn hor-
izontally to the right and corresponds to the positive -axis in Cartesian coordinates.

If is any other point in the plane, let be the distance from to and let be the
angle (usually measured in radians) between the polar axis and the line as in Figure 1.
Then the point is represented by the ordered pair and , are called polar coordi-
nates of . We use the convention that an angle is positive if measured in the counter-
clockwise direction from the polar axis and negative in the clockwise direction. If ,
then and we agree that represents the pole for any value of .%!0, %"r ! 0

P ! O
P

%r!r, %"P
OP

%POrP
x

O
O

10.3

xO ¨

r

polar axis

P(r, ̈ )

FIGURE 1  
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