about the x-axis. Therefore, from Formula 7, we get

$$S = \int_0^{\pi} 2\pi r \sin t \sqrt{(-r \sin t)^2} + (r \cos t)^2 dt$$

= $2\pi \int_0^{\pi} r \sin t \sqrt{r^2(\sin^2 t + \cos^2 t)} dt = 2\pi \int_0^{\pi} r \sin t \cdot r dt$
= $2\pi r^2 \int_0^{\pi} \sin t dt = 2\pi r^2(-\cos t) \Big]_0^{\pi} = 4\pi r^2$

10.2 EXERCISES

I-2 Find dy/dx.

- **1.** $x = t \sin t$, $y = t^2 + t$ **2.** x = 1/t, $y = \sqrt{t} e^{-t}$
- **3–6** Find an equation of the tangent to the curve at the point corresponding to the given value of the parameter.

3. $x = t^4 + 1$, $y = t^3 + t$; t = -1 **4.** $x = t - t^{-1}$, $y = 1 + t^2$; t = 1 **5.** $x = e^{\sqrt{t}}$, $y = t - \ln t^2$; t = 1**6.** $x = \cos \theta + \sin 2\theta$, $y = \sin \theta + \cos 2\theta$; $\theta = 0$

7–8 Find an equation of the tangent to the curve at the given point by two methods: (a) without eliminating the parameter and (b) by first eliminating the parameter.

- **7.** $x = 1 + \ln t$, $y = t^2 + 2$; (1,3) **8.** $x = \tan \theta$, $y = \sec \theta$; $(1, \sqrt{2})$
- 9-10 Find an equation of the tangent(s) to the curve at the given point. Then graph the curve and the tangent(s).

9. $x = 6 \sin t$, $y = t^2 + t$; (0,0) 10. $x = \cos t + \cos 2t$, $y = \sin t + \sin 2t$; (-1,1)

11–16 Find dy/dx and d^2y/dx^2 . For which values of t is the curve concave upward?

11. $x = 4 + t^2$, $y = t^2 + t^3$ **12.** $x = t^3 - 12t$, $y = t^2 - 1$ **13.** $x = t - e^t$, $y = t + e^{-t}$ **14.** $x = t + \ln t$, $y = t - \ln t$ **15.** $x = 2 \sin t$, $y = 3 \cos t$, $0 < t < 2\pi$ **16.** $x = \cos 2t$, $y = \cos t$, $0 < t < \pi$

17–20 Find the points on the curve where the tangent is horizontal or vertical. If you have a graphing device, graph the curve to check your work.

17. $x = 10 - t^2$, $y = t^3 - 12t$ **18.** $x = 2t^3 + 3t^2 - 12t$, $y = 2t^3 + 3t^2 + 1$ 19. $x = 2 \cos \theta$, $y = \sin 2\theta$ 20. $x = \cos 3\theta$, $y = 2 \sin \theta$

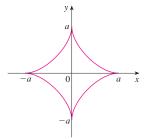
- **21.** Use a graph to estimate the coordinates of the rightmost point on the curve $x = t t^6$, $y = e^t$. Then use calculus to find the exact coordinates.
- **22.** Use a graph to estimate the coordinates of the lowest point and the leftmost point on the curve $x = t^4 2t$, $y = t + t^4$. Then find the exact coordinates.

23-24 Graph the curve in a viewing rectangle that displays all the important aspects of the curve.

23. $x = t^4 - 2t^3 - 2t^2$, $y = t^3 - t$ **24.** $x = t^4 + 4t^3 - 8t^2$, $y = 2t^2 - t$

- **25.** Show that the curve $x = \cos t$, $y = \sin t \cos t$ has two tangents at (0, 0) and find their equations. Sketch the curve.
- **26.** Graph the curve $x = \cos t + 2\cos 2t$, $y = \sin t + 2\sin 2t$ to discover where it crosses itself. Then find equations of both tangents at that point.
 - 27. (a) Find the slope of the tangent line to the trochoid x = rθ d sin θ, y = r d cos θ in terms of θ. (See Exercise 40 in Section 10.1.)
 - (b) Show that if d < r, then the trochoid does not have a vertical tangent.
 - **28.** (a) Find the slope of the tangent to the astroid $x = a \cos^3 \theta$, $y = a \sin^3 \theta$ in terms of θ . (Astroids are explored in the Laboratory Project on page 629.)
 - (b) At what points is the tangent horizontal or vertical?
 - (c) At what points does the tangent have slope 1 or -1?
 - **29.** At what points on the curve $x = 2t^3$, $y = 1 + 4t t^2$ does the tangent line have slope 1?
 - **30.** Find equations of the tangents to the curve $x = 3t^2 + 1$, $y = 2t^3 + 1$ that pass through the point (4, 3).
 - **31.** Use the parametric equations of an ellipse, $x = a \cos \theta$, $y = b \sin \theta$, $0 \le \theta \le 2\pi$, to find the area that it encloses.

- SECTION 10.2 CALCULUS WITH PARAMETRIC CURVES |||| 637
- **32.** Find the area enclosed by the curve $x = t^2 2t$, $y = \sqrt{t}$ and the *y*-axis.
- **33.** Find the area enclosed by the *x*-axis and the curve $x = 1 + e^t$, $y = t t^2$.
- **34.** Find the area of the region enclosed by the astroid $x = a \cos^3 \theta$, $y = a \sin^3 \theta$. (Astroids are explored in the Laboratory Project on page 629.)



- 35. Find the area under one arch of the trochoid of Exercise 40 in Section 10.1 for the case d < r.</p>
- **36.** Let \mathcal{R} be the region enclosed by the loop of the curve in Example 1.
 - (a) Find the area of \Re .
 - (b) If \mathcal{R} is rotated about the *x*-axis, find the volume of the resulting solid.
 - (c) Find the centroid of \Re .

37–40 Set up an integral that represents the length of the curve. Then use your calculator to find the length correct to four decimal places.

37.
$$x = t - t^2$$
, $y = \frac{4}{3}t^{3/2}$, $1 \le t \le 2$
38. $x = 1 + e^t$, $y = t^2$, $-3 \le t \le 3$
39. $x = t + \cos t$, $y = t - \sin t$, $0 \le t \le 2\pi$
40. $x = \ln t$, $y = \sqrt{t+1}$, $1 \le t \le 5$

41-44 Find the exact length of the curve.

41.
$$x = 1 + 3t^2$$
, $y = 4 + 2t^3$, $0 \le t \le 1$
42. $x = e^t + e^{-t}$, $y = 5 - 2t$, $0 \le t \le 3$
43. $x = \frac{t}{1+t}$, $y = \ln(1+t)$, $0 \le t \le 2$
44. $x = 3\cos t - \cos 3t$, $y = 3\sin t - \sin 3t$, 0

45. $x = e^t \cos t$, $y = e^t \sin t$, $0 \le t \le \pi$ **46.** $x = \cos t + \ln(\tan \frac{1}{2}t)$, $y = \sin t$, $\pi/4 \le t \le 3\pi/4$ **47.** $x = e^t - t$, $y = 4e^{t/2}$, $-8 \le t \le 3$

 $\leq t \leq \pi$

48. Find the length of the loop of the curve $x = 3t - t^3$, $y = 3t^2$.

- 49. Use Simpson's Rule with n = 6 to estimate the length of the curve x = t e^t, y = t + e^t, -6 ≤ t ≤ 6.
- **50.** In Exercise 43 in Section 10.1 you were asked to derive the parametric equations $x = 2a \cot \theta$, $y = 2a \sin^2 \theta$ for the curve called the witch of Maria Agnesi. Use Simpson's Rule with n = 4 to estimate the length of the arc of this curve given by $\pi/4 \le \theta \le \pi/2$.

51–52 Find the distance traveled by a particle with position (x, y) as *t* varies in the given time interval. Compare with the length of the curve.

51. $x = \sin^2 t$, $y = \cos^2 t$, $0 \le t \le 3\pi$

52. $x = \cos^2 t$, $y = \cos t$, $0 \le t \le 4\pi$

53. Show that the total length of the ellipse $x = a \sin \theta$, $y = b \cos \theta$, a > b > 0, is

$$L = 4a \int_0^{\pi/2} \sqrt{1 - e^2 \sin^2 \theta} \ d\theta$$

where *e* is the eccentricity of the ellipse $(e = c/a, \text{ where } c = \sqrt{a^2 - b^2})$.

- **54.** Find the total length of the astroid $x = a \cos^3 \theta$, $y = a \sin^3 \theta$, where a > 0.
- **(AS)** 55. (a) Graph the epitrochoid with equations

$$x = 11 \cos t - 4 \cos(11t/2)$$

$$y = 11 \sin t - 4 \sin(11t/2)$$

What parameter interval gives the complete curve?

- (b) Use your CAS to find the approximate length of this curve.
- **(LS) 56.** A curve called **Cornu's spiral** is defined by the parametric equations

$$x = C(t) = \int_0^t \cos(\pi u^2/2) \, du$$
$$y = S(t) = \int_0^t \sin(\pi u^2/2) \, du$$

where C and S are the Fresnel functions that were introduced in Chapter 5.

- (a) Graph this curve. What happens as $t \to \infty$ and as $t \to -\infty$?
- (b) Find the length of Cornu's spiral from the origin to the point with parameter value *t*.

57–58 Set up an integral that represents the area of the surface obtained by rotating the given curve about the *x*-axis. Then use your calculator to find the surface area correct to four decimal places.

57.
$$x = 1 + te^{t}$$
, $y = (t^{2} + 1)e^{t}$, $0 \le t \le 1$
58. $x = \sin^{2}t$, $y = \sin 3t$, $0 \le t \le \pi/3$

638 CHAPTER 10 PARAMETRIC EQUATIONS AND POLAR COORDINATES

59–61 Find the exact area of the surface obtained by rotating the given curve about the *x*-axis.

59.
$$x = t^3$$
, $y = t^2$, $0 \le t \le 1$
60. $x = 3t - t^3$, $y = 3t^2$, $0 \le t \le 1$
61. $x = a \cos^3 \theta$, $y = a \sin^3 \theta$, $0 \le \theta \le \pi/2$

62. Graph the curve

 $x = 2 \cos \theta - \cos 2\theta$ $y = 2 \sin \theta - \sin 2\theta$

If this curve is rotated about the *x*-axis, find the area of the resulting surface. (Use your graph to help find the correct parameter interval.)

63. If the curve

$$x = t + t^3$$
 $y = t - \frac{1}{t^2}$ $1 \le t \le 2$

is rotated about the *x*-axis, use your calculator to estimate the area of the resulting surface to three decimal places.

64. If the arc of the curve in Exercise 50 is rotated about the *x*-axis, estimate the area of the resulting surface using Simpson's Rule with n = 4.

65–66 Find the surface area generated by rotating the given curve about the *y*-axis.

65.
$$x = 3t^2$$
, $y = 2t^3$, $0 \le t \le 5$
66. $x = e^t - t$, $y = 4e^{t/2}$, $0 \le t \le 1$

- **67.** If f' is continuous and $f'(t) \neq 0$ for $a \leq t \leq b$, show that the parametric curve $x = f(t), y = g(t), a \leq t \leq b$, can be put in the form y = F(x). [*Hint:* Show that f^{-1} exists.]
- Use Formula 2 to derive Formula 7 from Formula 8.2.5 for the case in which the curve can be represented in the form y = F(x), a ≤ x ≤ b.
- **69.** The **curvature** at a point *P* of a curve is defined as

$$\kappa = \frac{d\phi}{ds}$$

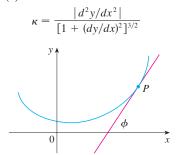
where ϕ is the angle of inclination of the tangent line at *P*, as shown in the figure. Thus the curvature is the absolute value of the rate of change of ϕ with respect to arc length. It can be regarded as a measure of the rate of change of direction of the curve at *P* and will be studied in greater detail in Chapter 13.

(a) For a parametric curve x = x(t), y = y(t), derive the formula

$$\kappa = \frac{\left| \dot{x} \ddot{y} - \ddot{x} \dot{y} \right|}{\left[\dot{x}^2 + \dot{y}^2 \right]^{3/2}}$$

where the dots indicate derivatives with respect to *t*, so $\dot{x} = dx/dt$. [*Hint:* Use $\phi = \tan^{-1}(dy/dx)$ and Formula 2 to find $d\phi/dt$. Then use the Chain Rule to find $d\phi/ds$.]

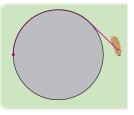
(b) By regarding a curve y = f(x) as the parametric curve x = x, y = f(x), with parameter x, show that the formula in part (a) becomes



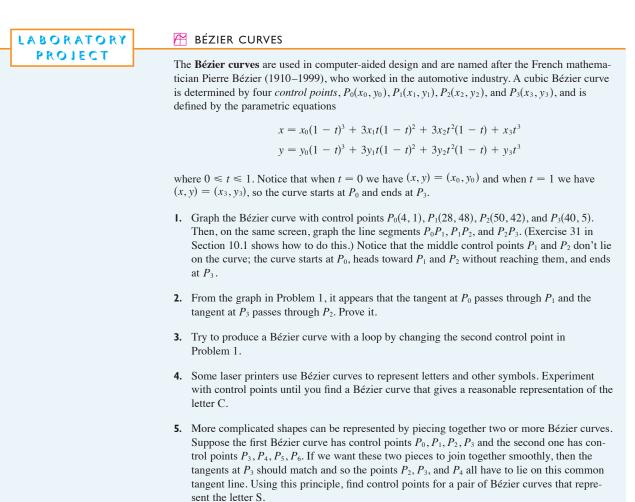
- **70.** (a) Use the formula in Exercise 69(b) to find the curvature of the parabola $y = x^2$ at the point (1, 1).
 - (b) At what point does this parabola have maximum curvature?
- **71.** Use the formula in Exercise 69(a) to find the curvature of the cycloid $x = \theta \sin \theta$, $y = 1 \cos \theta$ at the top of one of its arches.
- **72.** (a) Show that the curvature at each point of a straight line is $\kappa = 0$.
 - (b) Show that the curvature at each point of a circle of radius r is $\kappa = 1/r$.
- **73.** A string is wound around a circle and then unwound while being held taut. The curve traced by the point *P* at the end of the string is called the **involute** of the circle. If the circle has radius *r* and center *O* and the initial position of *P* is (r, 0), and if the parameter θ is chosen as in the figure, show that parametric equations of the involute are

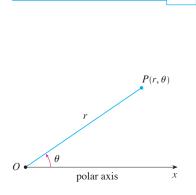
$$x = r(\cos \theta + \theta \sin \theta) \qquad y = r(\sin \theta - \theta \cos \theta)$$

74. A cow is tied to a silo with radius *r* by a rope just long enough to reach the opposite side of the silo. Find the area available for grazing by the cow.



SECTION 10.3 POLAR COORDINATES 639





POLAR COORDINATES

10.3

A coordinate system represents a point in the plane by an ordered pair of numbers called coordinates. Usually we use Cartesian coordinates, which are directed distances from two perpendicular axes. Here we describe a coordinate system introduced by Newton, called the **polar coordinate system**, which is more convenient for many purposes.

We choose a point in the plane that is called the **pole** (or origin) and is labeled *O*. Then we draw a ray (half-line) starting at *O* called the **polar axis**. This axis is usually drawn horizontally to the right and corresponds to the positive *x*-axis in Cartesian coordinates.

If *P* is any other point in the plane, let *r* be the distance from *O* to *P* and let θ be the angle (usually measured in radians) between the polar axis and the line *OP* as in Figure 1. Then the point *P* is represented by the ordered pair (r, θ) and r, θ are called **polar coordinates** of *P*. We use the convention that an angle is positive if measured in the counterclockwise direction from the polar axis and negative in the clockwise direction. If P = O, then r = 0 and we agree that $(0, \theta)$ represents the pole for any value of θ .